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1  INTRODUCTION 

 
1.1 OBJECTIVE AND ORGANIZATION OF THIS DOCUMENT 

This text addresses the analysis of damage data to create and test fragility functions for building 
components. Damage data may be empirical, analytical, or from expert opinion. The data comprise 
knowledge of the engineering demand parameter (EDP) to which components are subjected, as well as 
the associated damage. Damage is defined in terms of required repairs and other consequences. Here, a 
component fragility function means the probability that a component of a given type will reach or exceed 
a particular damage state, denoted by dm, as a function of EDP. The word “failure” is used throughout 
this text to refer to the condition of reaching or exceeding a specified damage state. The text primarily 
addresses fragility functions idealized by the lognormal cumulative distribution function.  
 
Section 1 introduces the problem. Mathematical methods for developing fragility functions are presented 
in Section 2. Section 3 deals with data outliers and assigning quality levels to fragility functions. 
Examples are presented in Section 4. Section 5 discusses damage correlation between different 
components in a building. Sections 6 and 7 contain acknowledgements and references, respectively.   
 
1.2 DOCUMENTATION REQUIREMENTS 

Following are recommended requirements to document source data, analysis, and resulting fragility 
functions. Document all source data, including the following.  
 

1. Bibliographic reference of any primary source.  
2. Description of specimens. Describe what was tested or observed, its materials and quantitative 

material properties (where available), configuration, building code or code era if known and 
applicable, number of specimens observed, and location of tests or observations.  

3. Excitation. Loading protocol or characteristics of earthquake motion. 
4. Damage evidence. Kinds of physical damage or force-deformation observed. 
5. Summary of observations. Tabular or graphical data listing specimens, excitation to which each 

was subjected, and damage evidence for each.  
 
Document the analysis of the fragility function, including a least the following: 
 

1. Analysis method. Identify the method used to derive the fragility function, from Table 1-1. 
2. Excitation to EDP. Method of inferring EDP from loading protocol or observed excitation. 

Indicate whether EDP is the value at which damage occurred (method A data) or maximum each 
specimen experienced (methods B, C, and U). Table 1-3 lists some EDPs in use, the first five of 
which are most likely to be used in ATC-58.  

3. Damage evidence to damage state. Method of inferring dm from physical damage or force-
deformation observations. 

4. Summary of inferred EDP and dm data. Tabular or graphical data listing specimens, EDP, dm. 
5. Show your work. Provide sample calculations. Do not skip steps.  

 
Document the results of the analysis, providing all the information listed in Table 1-2. The present work 
focuses on how to estimate xm and β using various kinds of data. 
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Table 1-1. Analysis methods and required data 

Method name Data required 
A. Actual failure EDP All specimens failed at observed values of EDP.  
B. Bounding EDP with damage Some specimens failed. Maximum EDP to which each specimen was 

subjected is known. 
C. Capable EDP No specimens failed. Maximum EDP to which each specimen was 

subjected is known. E.g., seismic qualification tests 
D. Derived fragility Fragility functions produced analytically by reliability methods 
E. Expert opinion No data available; expert judgment is required 
U. Updating Enhancing an existing fragility function with new failure data  
 

Table 1-2. Features of a well defined fragility function 
Feature Comment 
Taxonomic 
group 

Define the component using the ATC-58 taxonomy 

Units Select the units in which the component is counted (square feet, number, etc.).  
DM  Define the damage state quantitatively in terms of repairs required to restore the 

component. If repair efforts are uncertain, estimate means and standard deviations. 
Identify failure consequences: repair cost (Y/N), threaten life-safety (Y/N), loss of use 
(Y/N). 

EDP Identify the EDP(s) most closely related to failure probability. Competing possible EDPs 
are addressed in Section 3.1. 

xm and β Parameters of the fragility function 
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Table 1-3. Some EDPs in use 
EDP  Definition Ref
PTD Peak transient drift ratio (specified for a story, column line, and direction).  

PTD = |xi – xi-1|/hi, where xi = displacement of floor i, xi-1 = displacement of floor i-1, hi = 
height of story i from top of finished floor to top of finished floor, and the ratio is taken as 
the maximum over time during seismic loading. 

 

PDA Peak diaphragm acceleration, max horizontal direction (specified for story)  
RD Residual drift ratio (specified for story, column line, and direction).  

PTD = |xi – xi-1|/hi, where xi = displacement of floor i, xi-1 = displacement of floor i-1, hi = 
height of story i from top of finished floor to top of finished floor, and the ratio is taken 
after the end of seismic loading. 

 

MHR Maximum hinge rotation, rad  
G Maximum shear strain  
CDR Curvature ductility ratio  

CDR = (fm – fy)/(fu – fy), where fr = recoverable curvature of flexural member (i.e., curvature 
when yield moment occurs), fu = curvature of flexural member when ultimate moment 
occurs, fm = maximum curvature of flexural member attained during seismic loading 

 

PADI Modified Park-Ang Damage Index; specified for member and direction 
PADI = (fm – fy)/(fu – fy) + b(At/(fuMy)), where fr = recoverable curvature of flexural member 
(i.e., curvature when yield moment occurs), fu = curvature of flexural member when 
ultimate moment occurs, fm = maximum curvature of flexural member attained during 
seismic loading, b = strength deterioration parameter, At = total area contained in M-f loops, 
and My = yield moment of flexural member. 

[1] 

DC Peak transient drift ratio at beam-column connection, in percent 
DC = 100|xa – xb|/(0.5(ha + hb), where xa = displacement of the mid-height of the column 
above the connection, xb = displacement of the mid-height of the column below the 
connection, ha = height of the column above the connection, and hb = height of the column 
below the connection 

 

 
 
1.3 DEFINITION OF FRAGILITY FUNCTIONS AND PROBABILISTIC DAMAGE STATE 

Let Fdm(edp) denote the fragility function for damage state dm, defined as the probability that the 
component damage state reaches of exceeds dm, given a particular EDP value, i.e.,  
 

 ( ) [ ]|dmF edp P DM dm EDP edp≡ ≥ =  (1) 
 
The fragility function, illustrated in Figure 1-1(a) is expressed by:  
 

 ( ) ( )ln m
dm

edp x
F edp

β
⎛ ⎞

= Φ ⎜ ⎟
⎝ ⎠

 (2) 

 
where Φ denotes the standard normal (Gaussian) cumulative distribution function, xm denotes the median 
value of the distribution, and β denotes the logarithmic standard deviation. Both xm and β are established 
for each component type and damage state using the methods presented in Section 2. The probability that 
the component is in damage state dm, given EDP = edp, is given by  
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where N denotes the number of possible damage states for the component, in addition to the undamaged 
state, and dm = 0 denotes the undamaged state. Equation 3 is illustrated in Figure 1-1(b) for a component 
with N = 3. Note that, where N ≥ 2 and βi ≠ βj for two damage states i ≠ j, Equation 3 can produce a 
meaningless negative probability at some levels of edp. This case is addressed in Section 3.4. 
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P [DM =0|EDP =x ] = 1–F 1(x )

x

P [DM =1|EDP =x ]=F 1(x )–F 2(x )

P [DM =2|EDP =x ]=F 2(x )–F 3(x )

P [DM =2|EDP =x ]=F 3(x )

 
Figure 1-1. Illustration of (a) fragility function, and (b) evaluating damage-state probabilities 

 
 
SECTION 1 COMMENTARY 
 
C1.1 OBJECTIVE 
 
The text is intended as a resource to create fragility functions from damage data. The main text offers a 
recipe for fragility functions under each of six situations ranging from the best (known EDP at which 
components failed) to the worst (no data at all). The commentary provides alternative approaches and 
additional support.  
 
The text provides guidance on developing fragility functions, but the analyst must judge the 
appropriateness of the data and the method. Application of the equations presented here is not a substitute 
for understanding the processes that lead to component failure and their implications for fragility. 
 
The math is kept simple: no calculus is required, and the only function that is likely to be unfamiliar to the 
user is the Gaussian cumulative distribution function and its inverse, both of which are available on 
spreadsheet software (e.g., normsdist and normsinv, respectively, in Microsoft Excel).   
 
The text ignores EDPs that depend on damage to the component, as in a structural member. Ref. [2] 
suggests that even with structural members, sensitivity of EDP to component damage can be ignored 
without substantial error in the loss analysis.  
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Commentary section C1.3 discusses alternative forms of the fragility function and shows how to convert 
from compound lognormal or normal CDF to lognormal.  
 
C1.2 DOCUMENTATION REQUIREMENTS 
 
Well defined EDPs. Only scalar EDPs are addressed here. According to Ref [3], equipment damage in 
earthquakes often results from interaction of adjacent components, which cannot be reflected solely by 
EDP. This issue is ignored or treated implicitly here by assuming or requiring that damage data are 
collected from specimens that are representative of actual conditions in buildings, with the attendant 
possibility of interaction. 
 
A mathematical function with all parameters defined. Names for methods A-E and U are selected for 
mnemonic value, to imply decreasing quality from A to E, and to separate U from the quality ranking. 
 
Table 1-3. Some EDPs in use. The table includes EDPs for structural as well as nonstructural 
components.  
 
C1.3 DEFINITION OF FRAGILITY FUNCTIONS AND PROBABILISTIC DAMAGE STATE 
 
In the present effort, fragility functions are idealized using the lognormal cumulative distribution 
function, whose parameters xm and β are listed in Table 1-2 as part of the basic requirements for a fragility 
function. Most fragility data fit the lognormal distribution better than other distributions. If another 
functional form better fits the data, then the fragility need not be expressed as lognormal. Examples 
include the normal distribution, given by Equation 4, where μ and σ are parameters of the distribution fit 
to the data, the shifted lognormal, given by Equation 5, where c, xm, and β are parameters of the 
distribution fit to the data, and the compound lognormal, discussed next. 
 

 ( )dm
edpF edp μ

σ
−⎛ ⎞= Φ ⎜ ⎟

⎝ ⎠
 (4) 

 ( ) ( ) ( )( )ln m
dm

edp c x c
F edp

β
⎛ ⎞− −

= Φ ⎜ ⎟⎜ ⎟
⎝ ⎠

 (5) 

 
The equation for Φ is expressed in [4]. Both Φ and Φ−1 are generally built-in functions of spreadsheet and 
other mathematical software. 
 
Within the nuclear power industry, component fragility functions are sometimes expressed as compound 
lognormally distributed: xm is itself treated as lognormally distributed with median value xmm and 
logarithmic standard deviation βu. A second term, denoted here by βr, denotes the logarithmic standard 
deviation of the fragility function given a particular value of xm, denoted here by xm

*. Under the compound 
lognormal fragility function,  
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When compound lognormal fragility functions are encountered, one can calculate xm and β from xmm, βu, 
and βr,  
 

 
2 2
u r

m mmx x
β β β= +

=
 (7) 

 
and then use xm and β with Equations 2 and 3.  
 
Converting to lognormal from normal fragility functions. Normal (Gaussian) cumulative distributions 
functions are sometimes used for fragility functions. When they are encountered, one can calculate xm and 
β from the parameters of a Gaussian distribution if necessary. Let μ denote the mean value of the 
Gaussian fragility function, and let σ denote its standard deviation. Then  
 

 
( )( )
( )

2

2

ln 1

1mx

β σ μ

μ σ μ

= +

= +
 (8) 

 
 
 

2  DERIVING FRAGILITY FUNCTIONS 

This section provides mathematical procedures for developing fragility functions.  
 
2.1 METHOD A, ACTUAL EDP: ALL SPECIMENS FAILED AT OBSERVED EDP 

Let  
 

M = number of specimens tested to failure 
i = index of specimens, i ∈ {1, 2, … M} 
ri = EDP at which damage was observed to occur in specimen i. 

 
Then xm and β are estimated by 
 

 

( )( )

1

2
2 2

1

1exp ln

1 ln
1

M

m i
i

M

i m u
i

x r
M

r x
M

β β

=

=

⎛ ⎞= ⎜ ⎟
⎝ ⎠

⎛ ⎞= +⎜ ⎟−⎝ ⎠

∑

∑
 (9) 
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where βu  = 0.25 if any of the following is true, 0 otherwise: 
 

All specimens were in the same configuration (if applicable) 
All specimens had the same installation conditions 
All specimens experienced the same loading history 
M < 5  

 
If one or more of the ri data appear to lie far from the bulk of the data, either above or below, apply the 
procedure specified in Section 3.2. Finally, test the resulting fragility function using the Lilliefors 
goodness-of-fit test (Section 3.3). If it passes at the 5% significance level, the fragility function is 
acceptable.  
 
2.2 METHOD B, BOUNDING EDP: SOME SPECIMENS FAILED, PEAK EDP IS KNOWN 

Here, the data include the maximum EDP to which each of M specimens was subjected, and knowledge 
of whether the specimen exceeded the damage state of interest. Some specimens must be damaged. Let  
 

M = number of specimens observed.  
i = index of specimens, i ∈ {1, 2, … M} 
ri = maximum EDP to which specimen i was subjected 
fi = failure indicator for specimen i 

= 1 if specimen i failed (reached or exceeded damage state dm) 
= 0 otherwise 

N = number of EDP bins 
 N M⎢ ⎥= ⎣ ⎦  (10) 

 where ⎣ ⎦ means the largest integer less than or equal to the term inside the brackets 
j  = index of data bins, j ∈ {1, 2, … N} 
aj  = lower EDP bound of bin j 
 ( )1 1j N ja r − +=  (11) 

 Mj  = number of specimens with aj ≤ r < aj+1 

 
( ) ( )

( )
1

1

1

M

j i j i j
i
M

i j
i

M H r a H r a j N

H r a j N

+
=

=

= − − − <

= − =

∑

∑
 (12) 

xj = natural logarithm of the average r within bin j 

 
( ) ( )( )

( )

1
1

1

1ln

1ln

M

j i i j i j
ij
M

i i j
ij

x r H r a H r a j N
M

rH r a j N
M

+
=

=

⎛ ⎞
= − − − <⎜ ⎟⎜ ⎟

⎝ ⎠
⎛ ⎞

= − =⎜ ⎟⎜ ⎟
⎝ ⎠

∑

∑
 (13) 

mj  = number of failed specimens in bin j, i.e., 

 
( ) ( )( )

( )
1

1

1

M

j i i j i j
i
M

i i j
i

m f H r a H r a j N

f H r a j N

+
=

=

= − − − <

= − =

∑

∑
 (14) 

yj = inverse standard normal distribution of the failed fraction specimens in bin j, i.e., 
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where Φ-1 denotes the inverse standard normal distribution and 
 

H  = 1 if the value in parentheses is positive 
= ½ if the value in parentheses equals zero (16) 
= 0 if the value in parentheses is negative 

 
The fragility function parameters xm and β are determined by fitting a line ŷ = sx + c to the data: 
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where 
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and βu  = 0.25 if any of the following is true, 0 otherwise: 
 

All specimens were observed to be in the same configuration (if applicable) 
All specimens were observed to have the same installation conditions 
All specimens experienced the same loading history 
M < 5  

 
2.3 METHOD C, CAPABLE EDP: NO SPECIMENS FAILED, EDPS ARE KNOWN 

Given no observations of DM ≥ dm and M observations of no damage occurrences of DM ≥ dm, let  
 

ri = EDP experienced by specimen i (i = 1, 2, ... M) 
rmax = maxi{ri} 
rd = minimum EDP experienced by any specimen with distress 
ra = the smaller of rd and 0.7·rmax  
MA = number of specimens without apparent distress and with ri ≥ ra   
MB = number of specimens at any level of ri with distress not suggestive of imminent failure 
MC = number of specimens at any level of ri with distress suggestive of imminent failure 
rm  = rmax if MB + MC = 0 

= 0.5·(rmax + ra) otherwise 
S = subjective failure probability at rm 

 
 S = (0.5MC + 0.1MB)/(MA + MB + MC) (19) 
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Use Table 2-1 to determine Fdm(rm) and Equation 20 to determine β and xm. 
 

Table 2-1. Example values of exp(–zβ) 
 Conditions Fdm(rm) Z exp(–zβ), β=0.4  
 MA ≥ 3 and S = 0 0.01 -2.326 2.54  
 MA < 3 and S ≤ 0.075 0.05 -1.645 1.93  
 0.075 < S ≤ 0.15 0.10 -1.282 1.67  
 0.15 < S ≤ 0.3 0.20 -0.842 1.40  
 S > 0.3 0.40 -0.253 1.11  
 

 ( )( )
( )

1

0.4

exp
dm m

m m

z F r

x r z

β

β

−

=

= Φ

= −

` (20) 

 
2.4 METHOD D, DERIVED FRAGILITY FUNCTIONS: ANALYTICAL METHOD 

If the capacity of the component can be calculated in terms of edp using average material properties and 
dimensions, and β cannot, then assume a β value and calculate xm. Let r denote the calculated capacity of 
the component to resist damage state dm, including consideration of any anchorage or bracing. Then 
 

 
0.92
0.4

mx r
β

=
=

 (21) 

 
If β and r can both be calculated by analysis, then use 
 

 
( )2exp

m
rx

β
=  (22) 

 
2.5 METHOD E, EXPERT OPINION  

Select one or more experts with professional experience in the design or post-earthquake damage 
observation of the component of interest. Solicit their advice using the format shown in Figure 2-1. Note 
the suggested inclusion of representative images, which should be recorded with the responses. If an 
expert refuses to provide estimates or limits them to certain conditions, either narrow the component 
definition accordingly and iterate, or ignore that expert’s response and analyze the remaining ones. Let 
 

N = number of experts providing judgment about a value 
i  = index of experts, i ∈ {1, 2, … N} 
xmi  = estimated median EDP of expert i 
xli  = estimated lower-bound EDP of expert i 
wi  = level of expertise of expert i 
α = 1.5 
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( )ln
1.28

m lx x
β =  (25) 

 
If Equation 25 produces β < 0.4, either justify the β, or use Equation 24 and Equation 26: 
 

 
0.4
1.67m lx x

β =
=

 (26) 
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Figure 2-1. Form for soliciting expert judgment on component fragility 
 
Objective. This form solicits your judgment about the values of an engineering demand parameter (EDP) 
at which a particular damage state occurs to a particular building component. Judgment is needed because 
the component may contribute significantly to the future earthquake repair cost, fatality risk, or post-
earthquake operability of a building, and because relevant empirical and analytical data are currently 
impractical to acquire. Your judgment is solicited because you have professional experience in the design 
or post-earthquake damage observation of the component of interest.  
 
Definitions. Please provide judgment on the damageability of the following component and damage state. 
Images of a representative sample of the component and damage state may be attached. It is recognized 
that other EDPs may correlate better with damage, but please consider only the one specified here. 
 
Component name:    
Component definition:   
   
Damage state name:    
Damage state definition:    
   
Relevant EDP:   
Definition of EDP:    
   
 
Uncertainty; no personal stake. Please provide judgment about this general class of components, not any 
particular instance, and not one that you personally designed, constructed, checked, or otherwise have any 
stake in. There is probably no precise threshold level of EDP that causes damage, because of variability in 
design, construction, installation, inspection, age, maintenance, interaction with nearby components, etc. 
Even if there were such a precise level, nobody might know it with certainty. To account for these 
uncertainties, please provide two values of EDP at which damage occurs: median and lower bound.  
 
Estimated median EDP:   Definition. Damage would occur at this level of EDP in 
5 cases out of 10, or in a single instance, you judge there to be an equal chance that your median estimate 
is too low or too high. 
 
Estimated lower-bound EDP:   Definition. Damage would occur at this level of EDP in 
1 case in 10. In a single case, you judge there to be a 10% chance that your estimate is too high. Judge the 
lower bound carefully. Make an initial guess, then imagine all the conditions that might make the actual 
threshold EDP lower, such as errors in design, construction or installation, substantial deterioration, poor 
maintenance, more interaction with nearby components, etc. Revise accordingly and record your revised 
estimate. Research shows that without careful thought, expert judgment of the lower bound tends to be 
too close to the median estimate, so think twice and do not be afraid of showing uncertainty. 
 
On a 1-to-5 scale, please judge your expertise with this component and damage state, where 1 means “no 
experience or expertise” and 5 means “very familiar or highly experienced.” 
 
Your level of expertise:   
 
Your name:    Date:    
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2.6 METHOD U, UPDATING A FRAGILITY FUNCTION WITH NEW METHOD-B DATA 

Here, the data include a preexisting fragility function and a set of M specimens with known maximum 
excitation and damage state. It is not necessary that any of the specimens experienced damage. (See the 
commentary for the case of Method-A data, i.e., specimens tested to failure.) Let  
 

M = number of specimens observed.  
i = index of specimens, i ∈ {1, 2, … M} 
ri = maximum EDP to which specimen i was subjected 
fi = failure indicator for specimen i 

= 1 if specimen i failed (reached or exceeded damage state dm) 
= 0 otherwise 

xm  = median from pre-existing fragility function 
β  = logarithmic standard deviation from pre-existing fragility function 
x′m = median of the revised fragility function 
β′  = logarithmic standard deviation of the revised fragility function 

 
Calculate the revised median and logarithmic standard deviation as follows: 
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=

=
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where 
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where Π denotes the  product of the terms that come after it, and where 
 

xm1 = xm4 = xm5 = xm 
xm2 = xme–1.22β 
xm3 = xme1.22β 
β1 = β2 = β3 = β  (30) 
β4 = 0.64β  
β5 = 1.36β  
w1 = 1/3 
w2 = w3 = w4 = w5 = 1/6 
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SECTION 2 COMMENTARY 
 
C2.1 METHOD A, ACTUAL EDP: ALL SPECIMENS FAILED AT OBSERVED EDP 
 
These are the most informative data for creating fragility functions. They are most common where a DM 
can be associated with a point on the observed force-deformation behavior of a component, such as a 
yield point. Alternatively, specimens are subjected to increasing levels of EDP. The test is interrupted 
after each level of EDP is imposed, and the specimen examined for damage. The justification for the βu 
term is that uniform configuration, installation conditions, loading history, and small sample size are 
likely to result in an underestimate of β. 
 
C2.2 METHOD B, BOUNDING EDP: SOME SPECIMENS FAILED, PEAK EDP IS KNOWN 
 
Here, the data include the maximum EDP to which each of M specimens was subjected, and knowledge 
of whether the specimen exceeded the damage state of interest. The method works best for cases where M 
≥ 25 (an alternative is presented later). Data must not be biased by damage state, i.e., specimens must not 
be selected because they experienced damage. The data are grouped into bins by ranges of EDP, where 
each bin has approximately the same number of specimens in it. For each bin, one calculates the fraction 
of specimens that failed and the bin-average EDP. These serve as independent data points of failure 
probability and EDP. The choice of N ≈ M1/2 is recommended as it creates a number of bins 
approximately equal to the number of specimens in each bin.  
 
The approach discussed in the text converts Equation 2 to a linear regression problem by taking the 
inverse Gaussian CDF of each side and fitting a line ŷ = sx + c to the data, as illustrated in Figure 2-2. In 
Equation 15, 1 is added to numerator and denominator to deal with cases with zero failures in the bin. 
 

 
x  = ln(r )

0

  ŷ  = sx  + c
    β  ≈ 1/s
x m ≈ exp (–c β )

c

 
 Porter (17 Mar 2006) fitting fragility function.xls.ChartFitFfn  

Figure 2-2. Estimating lognormal fragility function parameters from binned failure data with peak EDP 
 
As with Method A, the justification for the βu term is that uniform configuration, installation conditions, 
loading history, and small sample size are likely to result in an underestimate of β.  
 
Method B-2. Another way to fit a fragility function to bounding-EDP data is to perform a least-squares fit 
to the binary failure data, as illustrated in Figure 2-3. Let 
 
 M = number of specimens observed.  
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 i = index of specimens, i ∈ {1, 2, … M} 
 ri = EDP to which specimen i was subjected 
 fi = failure indicator for specimen i 

= 1 if specimen i failed (reached or exceeded damage state dm) 
= 0 otherwise 

 Φ  = standard normal (Gaussian) cumulative distribution function  
 
Find xm, βr to minimize ε2 such that: 
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and calculate β: 
 

 2 2
r uβ β β= +  (32) 

 
where βu  = 0.25 if any of the following is true, 0 otherwise: 
 

All specimens were observed to be in the same configuration (if applicable) 
All specimens were observed to have the same installation conditions 
All specimens experienced the same loading history 
M < 5  

 
Spreadsheet and other mathematical software have built-in solver routines to perform this calculation. The 
advantage of this approach is that it avoids errors associated with bin-average EDPs. 
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Figure 2-3. Lognormal fragility function from binary failure data with peak EDP by least-squares fit 
 
This application of least-squares parameter estimation for fragility functions using binary data is 
introduced here, and was tested by simulation.  
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Method B-3. For bins with varying number of specimens, one can perform a weighted least-squares fit to 
failure-rate data, using the number of specimens in each bin as the bin weight. Let  
 

M = number of specimens observed 
i = index of specimens, i ∈ {1, 2, … M} 
ri = maximum EDP to which specimen i was subjected 
fi = failure indicator for specimen i 

= 1 if specimen i failed (reached or exceeded damage state dm) 
= 0 otherwise 

N = number of EDP bins, selected by the analyst 
j  = index of data bins, j ∈ {1, 2, … N} 
aj  = lower EDP bound of bin j, selected by the analyst 

 Mj  = number of specimens in bin j 
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xj = average r within bin j 
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mj  = number of failed specimens in bin j 
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yj = failure rate in bin j 

 j
j

j

m
y

M
=  (36) 

where  
 H  = 1 if the value in parentheses is positive 
 = ½ if the value in parentheses equals zero (37) 
 = 0 if the value in parentheses is negative 
Find xm and βr to minimize ε2 such that: 
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Calculate β: 

 2 2
r uβ β β= +  (39) 

where βu  = 0.25 if any of the following is true, 0 otherwise: 
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All specimens were observed to be in the same configuration (if applicable) 
All specimens were observed to have the same installation conditions 
All specimens experienced the same loading history 
M < 5  

 
Again, spreadsheet and other mathematical software have built-in solver routines to perform this 
calculation. The advantage of this approach is that bins can have varying number of specimens. One 
useful application is earthquake experience data where varying numbers of specimens are observed at 
each of several facilities, and the EDP for each bin is taken as a single estimate for the facility.  
 
C2.3 METHOD C, CAPABLE EDP: NO SPECIMENS FAILED, EDPS ARE KNOWN  
 
Method C is introduced in the present guidelines. It is based on and expanded from Ref [5]. It addresses 
the best case for this type of data, i.e., many specimens, none of which had apparent distress, and several 
of which were subjected to EDP near the maximum value. It also addresses the more general case, 
including situations where few specimens experienced EDP near the maximum, or where some specimens 
experienced distress short of the damage state of interest, or both.  
 
The procedure creates a bin-average subjective failure probability S for a bin of specimens at the high end 
of the tested range of EDP, and assigns a response value to this bin of specimens. The bin includes all 
specimens with some distress, the lowest of which has EDP = rd, and all specimens without distress that 
were subjected to EDP of at least rd or 0.7 times the largest level of EDP to which any specimen was 
subjected. The specimens in this bin without apparent distress are assigned 0% subjective failure 
probability, 10% for specimens with distress not suggestive of imminent failure, and 50% for specimens 
with distress suggestive of imminent failure. It assigns to this bin the median EDP of all the specimens in 
the bin, denoted by rm. Combining the point on the fragility function (rm, S) with an assumed β = 0.4 
produces a fragility function consistent with the assigned subjective failure probabilities. The precise 
interpretation of “distress suggestive of imminent failure” is left to the analyst. 
 
The value of β = 0.4 is selected by the judgment of the ATC-58 Nonstructural Products team as an 
approximate median of observed β values. The use of β = 0.3 produces a more conservative estimate, if 
conservativeness is desired.  
 
C2.4 METHOD D, DERIVED FRAGILITY FUNCTIONS: ANALYTICAL METHOD 
 
The capacity of some components can be calculated by modeling the component as a structural system, 
and determining the level of excitation (e.g., acceleration or shear deformation) that would cause the 
system to reach dm. Other components may be amenable to fault tree analysis; see, e.g., [6].  
 
Equation 21 assumes that β = 0.4 and calculates the median of a lognormal distribution from the mean 
value and β.  
 
C2.5 METHOD E, EXPERT OPINION  
 
There are several methods for eliciting expert opinion, from the completely ad-hoc to structured processes 
involving multiple experts, self-judgment of expertise, and iteration to examine major discrepancies 
between experts. To elicit expert opinion on probabilistic quantities properly requires attention to clear 
definitions, biases, assumptions, and expert qualifications. The method proposed here employs [7] for 
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probability encoding and [8] for expert qualification, simplified for practicality. Other relevant references 
include [9, 10, 11, and 12].  
 
Ref [7] offers methods for eliciting expert judgment where the expert provides probabilities associated 
with specified values of the parameter of interest (P-method); values for specified probabilities (V-
method); and both values and probabilities with neither fixed (PV-method). The method presented here 
employs a V-method, judging it to be the simplest and most intuitive of the three, and drawing on the 
precedent of [12]. Ref [7] also provides for two modes of response: direct, where the expert provides 
numbers as a response; and indirect, where the expert chooses between two or more bets or alternatives 
that are adjusted until the expert is indifferent between the alternatives, from which values or probabilities 
can be extracted. Direct response is selected here as less time-consuming and requiring less calculation. 
Ref [7] provides for soliciting many points on a probability distribution, using a mechanical device to 
depict probability visually, and fitting a curve to these data. These refinements are rejected as too 
cumbersome for present purposes. Nonetheless, the same basic steps are employed here as proposed in 
[7]:  
 
1. Motivating, in which the purpose and importance of the effort are explained. 
2. Structuring, in which one defines the quantities to be judged. 
3. Conditioning, in which one specifies the conditions on which the quantities are to be judged. 
4. Encoding, in which the expert expresses judgments in quantitative probabilistic terms. 
5. Verifying, in which the analyst checks the values for consistency. 
 
Ref [9] represents the classic text on soliciting expert opinion via the Delphi process. Ref [8] 
demonstrates that if one employs the Delphi process and also solicits judgment from respondents about 
their own level of expertise, the results tend to be more accurate if one screens the judgments to include 
only those who rate their expertise highly. The authors show that self-rating improves estimates more than 
feedback, i.e., iteration to discuss discrepancies. Expertise was self-evaluated on a 1-to-5 scale, and group 
error compared with average group self-rating. The data suggest that those who rate their expertise as 1 
estimate quantitative values with three times greater error than the most-expert.  
 
Ref [12] modified the screening approach to include all experts, but to create a weighted average of the 
solicited judgment, where the weight is based on the experts’ self-judgment of their expertise and 
confidence about the particular value they were estimating. This seems to be a reasonable compromise 
and is employed here. Its authors used a 1-10 scale for expertise, and weighted response by expertise 
raised to the 4th power, so that the most-expert respondent would have his or her response weighted 
10,000 times greater than the least-expert respondent.  Using a 1-to-5 scale would make an equivalent α 
value of 6, which seems to be too high in light of [8]. Using a α = 1.5, an expert with w = 5 is weighted 
twice as heavily as one with w = 3, and 11 times the weight of an expert with w = 1. 
 
Ref [10] supports the notion that Delphi estimation is an orderly process and provides a reasonable means 
for obtaining group consensus on a forecast, which lends weight to the notion that a similar process can 
reasonably be applied here. Ref [11] finds that the distribution of expert opinion on uncertain variables 
that must have a positive value (in that work, future dates) tends to be lognormally distributed, which 
supports the use of Equation 25.  
 
Ref [12] employed an iterative process of judging values, with multiple rounds of judgment followed by 
discussion of any large discrepancies between experts. Such an iterative approach might be practical in 
some circumstances, but perhaps not in general. For simplicity, no iteration is proposed here.  
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Refs [13] and [14] support the notion that by establishing the EDP at which the component has 10% 
failure probability, the overall reliability of the component is fairly insensitive to β, hence the value of 
directly encoding experts’ judgment of this value in particular.  
 
Regarding Equation 26, it is common for experts to express overconfidence in an uncertain variable, such 
as the EDP at which damage will occur. If, despite the advice in Figure 2-1 regarding uncertainty, the 
results of the survey produce β < 0.4, and this low value of β cannot be justified, use the judged xl to 
anchor the fragility function, apply β = 0.4, and calculate the resulting value of xm.  
 
C2.6 METHOD U, UPDATING A FRAGILITY FUNCTION WITH NEW METHOD-B DATA 
 
This is the most complicated method presented here. Yet it still requires of the analyst no more 
mathematics than calculating sums, products, and cumulative Gaussian distribution functions. It uses 
Bayesian updating to revise the parameters xm and β of a preexisting fragility function, based on 
observation of a set of M specimens whose EDP and damage state pairs (r, f) have been observed, as after 
an earthquake.  
 
To perform the updating, it is recognized that xm and β are themselves uncertain, and have some 
probability distributions of their own. It is these distributions that will be revised, and new expected 
values for xm and β calculated. The prior probability distribution of xm is taken as lognormal with median 
equal to the xm value in the preexisting fragility function, and logarithmic standard deviation taken as 
0.707 times the β of the preexisting fragility function. This is consistent with a compound lognormal 
fragility function and the assumption that βr = βu = 0.707β.  
 
The prior probability distribution of β is taken as normal with expected value equal to the β of the 
preexisting fragility function, and coefficient of variation (COV) taken to be 0.21. This COV is selected 
because it provides for 98% probability that β is within the bounds of 0.5 and 1.5 times the prior β, which 
agrees with the general range for β of 0.2 to 0.6.  
 
The distributions of xm and β are assumed to be independent. Their joint distribution is approximated by 
five discrete points (xmj, βj), each with probability-like weight wj (where j = 1, 2, … 5). Using a method 
described in [15], the values of xmj, βj, and wj are chosen so that the first five moments of the discrete joint 
distribution match those of the continuous joint distribution. The principle is illustrated in Figure 2-4, 
which shows a probability density function of two variables xm and β (the surface) and the discrete points 
(bars), each with an associated weight. The first few moments of the points (the mean, variance, etc.) 
match those of the surface.  
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Figure 2-4. Substituting a sample of 5 points (bars) for a continuous joint distribution (surface) 
 
In Equation 28, the weights of these five points are updated to account for the observations, and the 
revised xm and β are calculated in Equation 27 based on the updated weights.  
 
Another situation where Bayesian updating can be used is where the data include a preexisting fragility 
function and a set of M specimens tested to failure, where the EDP at which each specimen exceeded the 
damage state of interest is known. The procedure is the same as with method U, except that ri denotes the 
EDP at which damage was observed to occur in specimen i, and Equation 29 is replaced by  
 

 ( ) ( )ln
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r x
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where φ denotes the standard normal (Gaussian) probability density function. Note that φ is the bell-
shaped curve that is the first derivative of the S-shaped cumulative distribution function, Ф. It can be 
found in common spreadsheet software, e.g., normdist in MS Excel. Be careful to set software flags to 
have the function calculate probability density rather than the cumulative distribution. 
 
 
 

3  ASSESSING FRAGILITY FUNCTION QUALITY  

The previous section provided mathematical procedures for developing fragility functions. Issues 
associated with the quality of those fragility functions are now addressed, particularly the treatment of 
competing EDPs, goodness-of-fit testing, dealing with fragility functions that cross, and how to assign an 
overall quality level to a fragility function.  
 
3.1 CONSIDERING COMPETING EDPS 

It may be that one is uncertain of which EDP mostly matters to component damage. Create fragility 
functions for each possibly relevant EDP. If different EDPs have the same coefficient of variation, choose 
the fragility function that has the lowest β. If different EDPs have differing coefficient of variation, let   
 

N = number of competing EDPs being considered 
i = index of EDPs, i.e., i ∈ {1, 2, … N}. For example, EDP 1 might be peak diaphragm 

acceleration, EDP 2 might be floor spectral acceleration response, etc. 
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βEDPi|S = residual logarithmic standard deviation of EDP i given the structural model S,  assumed 
to be independent of IM  

βDM|EDPi = logarithmic standard deviation of EDP i causing DM ≥ dm to be exceeded, given EDP, 
assumed to be independent of S and IM. This is “the β” of the fragility function created in 
terms of EDP i. 

βDM,EDPi|S = logarithmic standard deviation of EDP i causing DM ≥ dm to be exceeded, given S, 
assumed to be independent of IM: 

 

 2 2
, | | |DM EDPi S EDPi S DM EDPiβ β β= +  (41) 

 
Choose the fragility function that has the lowest value of βDM,EDPi|S.  
 
3.2 DEALING WITH OUTLIERS BY PEIRCE’S CRITERION 

It is possible that one or more samples ri of Method-A data are spurious, and reflect experimental errors 
rather than the true EDPs at which the specimens failed. In cases where these ri lie far from the bulk of 
the data, investigate whether the data reflect real issues in the damage process that may recur, especially 
where ri << xm. If there is no indication that these data reflect a real recurring issue in the damage process, 
apply the following procedure (Peirce’s criterion) to test and eliminate doubtful observations of ri.  
 

1. Calculate ln(xm) and β of the complete data set. 
2. Let D denote the number of doubtful observations, and let R denote the maximum distance of an 

observation from the body of the data, defined as:  

 
( ) ( )

max
ln ln mr x

R
β

−
=  (42) 

where xm, β, and M are as defined for Equation 9, r is a measured EDP value, and R is shown in 
Table 3-1. Assume D = 1 first, even if there appears to be more than one doubtful observation. 

3. Calculate the maximum allowable deviation: | ln(r) – ln(xm) |max. Note that this can include r >> xm 
and r << xm.  

4. As with Equation 9, let ri denote the EDP at which damage was observed to occur in specimen i. 
For any suspicious measurement ri, obtain | ln(ri) – ln(xm) |. 

5. Eliminate the suspicious measurements if:  
 ( ) ( ) ( ) ( )

max
ln ln ln lni m mr x r x− > −  (43) 

6. If this results in the rejection of one measurement, assume D=2, keeping the original values of xm, 
β, and M, and go to step 8. 

7. If more than one measurement is rejected in the above test, assume the next highest value of 
doubtful observations. For example, if two measurements are rejected in step 5, assume the case 
of D = 3, keeping the original values of xm, β, and M as the process is continued. 

8. Repeat steps 2 – 5, sequentially increasing D until no more data measurements are eliminated. 
9. Obtain xm and β of the reduced data set by Equation 9. 
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Table 3-1. Parameters for applying Peirce's criterion 
 

M D=1 D=2 D=3 D=4 D=5 D=6 D=7 D=8 D=9
3 1.1960   
4 1.3830 1.0780  
5 1.5090 1.2000  
6 1.6100 1.2990 1.0990  
7 1.6930 1.3820 1.1870 1.0220  
8 1.7630 1.4530 1.2610 1.1090  
9 1.8240 1.5150 1.3240 1.1780 1.0450  

10 1.8780 1.5700 1.3800 1.2370 1.1140  
11 1.9250 1.6190 1.4300 1.2890 1.1720 1.0590  
12 1.9690 1.6630 1.4750 1.3360 1.2210 1.1180 1.0090 
13 2.0070 1.7040 1.5160 1.3790 1.2660 1.1670 1.0700 
14 2.0430 1.7410 1.5540 1.4170 1.3070 1.2100 1.1200 1.0260
15 2.0760 1.7750 1.5890 1.4530 1.3440 1.2490 1.1640 1.0780
16 2.1060 1.8070 1.6220 1.4860 1.3780 1.2850 1.2020 1.1220 1.0390
17 2.1340 1.8360 1.6520 1.5170 1.4090 1.3180 1.2370 1.1610 1.0840
18 2.1610 1.8640 1.6800 1.5460 1.4380 1.3480 1.2680 1.1950 1.1230
19 2.1850 1.8900 1.7070 1.5730 1.4660 1.3770 1.2980 1.2260 1.1580
20 2.2090 1.9140 1.7320 1.5990 1.4920 1.4040 1.3260 1.2550 1.1900

>20 alnM + b 
a 0.4094 0.4393 0.4565 0.4680 0.4770 0.4842 0.4905 0.4973 0.5046
b 0.9910 0.6069 0.3725 0.2036 0.0701 -0.0401 -0.1358 -0.2242 -0.3079

 
 
3.3 GOODNESS OF FIT TESTING  

Test fragility functions created using Method A for goodness of fit. Calculate 
 

 ( ) ( )max X dm MD F edp S edp= −  (44) 

 
where SM(edp) denotes the sample cumulative distribution function  
 

 ( ) ( )
1

1 M

M i
i

S edp H r edp
M =

= −∑  (45) 

 
and H is given by Equation 16. If D > Dcrit from Table 3-2, the fragility function fails the goodness of fit 
test. The result is used in assigning a quality level to the fragility function. Use α = 0.05.   
 

Table 3-2. Critical values for the Lilliefors Test 
Significance Level Dcrit 
α = 0.15 0.775 / (M0.5 – 0.01 + 0.85M–0.5) 
α = 0.10 0.819 / (M0.5 – 0.01 + 0.85M–0.5) 
α = 0.05 0.895 / (M0.5 – 0.01 + 0.85M–0.5) 
α = 0.025 0.995 / (M0.5 – 0.01 + 0.85M–0.5) 
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3.4 FRAGILITY FUNCTIONS THAT CROSS 

Some components have two or more possible damage states, with a fragility function for each. For any 
two (cumulative lognormal) fragility functions i and j with medians xmj > xmi and logarithmic standard 
deviations βi ≠ βj, the fragility functions will cross. In such a case, either replace Equation 2 with 
 

 ( ) ( )ln
max mj

i j
j

edp x
F edp

β

⎧ ⎫⎛ ⎞⎪ ⎪= Φ ⎜ ⎟⎨ ⎬⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭
     for all j ≥ i (46) 

 
or establish xm and β values for the various damage states independently, and then revise them as:  
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N

i i
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x x

β β

β β
=

′ =

′ ′= − +

∑
  for all i (47) 

 
where i indexes the damage state and N is the number of damage states in addition to undamaged.  
 

3.5 ASSIGNING A SINGLE QUALITY LEVEL TO A FRAGILITY FUNCTION 

Assign a fragility function a quality level of high, medium, or low, as shown in Table 3-3. Report the 
quality of fragility functions used with the loss estimate.  
 

Table 3-3. Fragility function quality level 
Quality Method Peer 

reviewed* 
Number of 
specimens 

Other 

A Yes ≥ 5 Passes Lilliefors test at 5% significance level. 
Examine and justify (a) differences of greater than 
20% in xm or β, compared with past estimates, and 
(b) any case of β < 0.2 or β > 0.6.  

B Yes ≥ 20 Examine and justify (a) differences of greater than 
20% in xm or β, compared with past estimates, and 
(b) any case of β < 0.2 or β > 0.6. 

High 

U Yes ≥ 6 Prior was at least moderate quality 
A  ≥ 3 Examine and justify any case of β < 0.2 or β > 0.6. 
B  ≥ 16 Examine and justify any case of β < 0.2 or β > 0.6. 
C Yes ≥ 6  
D Yes   
E Yes  At least 3 experts with w ≥ 3 

Moderate 

U  ≥ 6 or prior was moderate quality 
Low    All other cases 
* Data and derivation published in a peer-reviewed archival journal. 
 
SECTION 3 COMMENTARY 
 
C3.1 CONSIDERING COMPETING EDPS 
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If competing EDPs themselves have differing degrees of uncertainty for the same structural model, EDP 
uncertainty must also be considered. In such a case, it is assumed that each EDP is lognormally 
distributed conditioned on the structural model S and on IM, and that the fragility functions being 
examined are in the form of cumulative lognormal distributions of EDP at which the damage state DM is 
reached or exceeded. Then selecting the fragility function that uses EDP with the lowest value of 
βDM,EDPi|S will produce the lowest uncertainty in damage state, after accounting for uncertainty in EDP.  
 
An additional refinement to Equation 41 would be to account for the fact that βSi might vary with EDP, 
and that lower values are EDP are more likely that higher ones in a single event. Such a case is not 
considered here.  
 
C3.2 DEALING WITH OUTLIERS BY PEIRCE’S CRITERION 
 
Do not assume that Method-A data that lie far from other specimens necessarily result from measurement 
or other procedural error. To the extent possible, investigate whether outliers might reflect an anomalous, 
possibly infrequent, but real causal pattern in the damage process. This is particularly important for cases 
where ri << xm, and failure might affect life safety. Such outliers could be a signal that a better damage 
model is needed. In any event, outliers should be reported along with the rest of the data used in the 
analysis, even if the outliers are removed.  
 
If available evidence suggests that the outliers reflect measurement or other procedural errors, there are 
several procedures for treating them. Ref [16] summarizes and compares Chauvenet’s criterion and 
Peirce’s criterion. Chauvenet’s criterion is simpler and more commonly used, but relies on an arbitrary 
assumption and does not distinguish between cases of a single outlier and many. Peirce’s criterion is 
recommended here. The procedure presented here is adapted from Ref [16] for lognormally distributed 
data. Peirce’s criterion is based on the principle that “ …the proposed observations should be rejected 
when the probability of the system of errors [Ref 16 interprets “the system of errors” as the actual 
deviations from the mean] obtained by retaining them is less than that of the system of errors obtained by 
their rejection multiplied by the probability of making so many, and no more, abnormal observations.” In 
Table 3-1, the equation for R for 20 < M ≤ 60 was fit to the data in Ref [16], and is introduced here for the 
sake of brevity.  
 
C3.3 GOODNESS OF FIT TESTING 
 
Goodness-of-fit testing refers to mathematical tests to check that assumed distribution adequately fits the 
data. Common tests include the chi-square (χ2), Kolmogorov-Smirnov (K-S), and Lilliefors tests [17], the 
last of which is proposed for use here. The Lilliefors test is a special case of the K-S test, applicable for 
testing whether a set of observations adequately fits a normal or lognormal distribution, when the mean 
and variance are estimated from the sample, as is the case in the present application. If the fragility 
function fails the goodness of fit test, one can reject the hypothesis that the observations are from a 
normal population. It is common to use the 5% significance level. The equations in Table 3-2 are shown 
here for brevity, rather than using the longer table from Ref [17]; they are taken from [18] and were 
checked for accuracy.  
 
C3.4 FRAGILITY FUNCTIONS THAT CROSS 
 
It can be shown that the failure probability for damage state j > i will exceed that of damage state i under 
the following conditions:  
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 (48) 

 
producing a negative probability of being in damage state i (Equation 3b). There is no meaning to a 
negative probability, so fragility functions that cross pose a problem. Figure 3-1(left) illustrates both cases 
of Equation 48: Comparing F1 and F2, the higher damage state has higher β. Comparing F2 and F3, the 
higher damage state has lower β. Figure 3-1(center) illustrates the use of Equation 46: take the fragility 
function for damage state i as the maximum of all fragility functions j ≥ i. Figure 3-1(right) illustrates the 
use of Equation 47: adjust the fragility functions so that they do not cross, and so that they match the 
originals at the 10% failure probability.  
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Figure 3-1. Illustration of fragility functions that cross (left); solution with Equation 46 (center) and 47 (right) 
 
See Section C2.5 for support for matching the 10th percentile of capacity, between original and adjusted 
fragility functions.  
 
C3.5 ASSIGNING A SINGLE QUALITY LEVEL TO A FRAGILITY FUNCTION 
 
It has been observed that system performance is more sensitive to failure rates at low values of EDP than 
at high values. One can perform an additional check of the goodness of fit for a fragility function 
produced by Methods A and B. Let us refer to this fragility function as the initial fit. Consider the subset 
of data with r ≤ xm (where xm is estimated from the initial fit). Fit a fragility function to the subset 
(referred to here as the subset fragility function). Let mx′  and β′ denote the parameters of the subset 
fragility function. If the quality of the subset fragility function is at least equal to that of the initial fit, and 
if either of the following conditions is true, then the subset fragility function is preferred to the initial fit.  
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4  EXAMPLES 

This section presents examples of each method presented in Section 2, Deriving Fragility Functions. 
 
Example 1. Method A. Ref [19] provides a table of peak transient drift ratios at which 43 specimens of 
pre-1976 reinforced concrete slab-column connections experienced cracking of no more than 0.3mm 
width. The data are repeated in Table 4-1 with original specimen numbers. Calculate the fragility function 
and test goodness of fit. 
 
Solution. The data are sorted in order of increasing r, an index i is added, the statistics ln(ri) and ln(ri/xm)2 
calculated and summed, as shown in Table 4-2. Using Equation 9,  
 

xm = exp(1/M·Σi(ln(ri))  
= exp(-41.6/43)  
= 0.38 

 
β = (Σi(ln(ri/xm)2))/(M–1))0.5  

= (6.399/42)0.5 
= 0.39 

 
In Table 4-3, the sample cumulative distribution function is calculated. Note the dummy specimens are 
added after increases in r, to produce the stepped sample cumulative distribution function shown in Figure 
4-1, which is required to comply with Equation 45. Unneeded specimens are omitted from Table 4-3 for 
brevity.  
 

( )i
iS r

M
=  

 
The fragility function and D are calculated: 

 

( ) ( )

( )
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ln 0.38
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⎝ ⎠

= −

 

 
As shown in Table 4-3, D = 0.11. The critical value for the Lilliefors test at the 5% significance level, 
from Table 3-2, is 
 

Dcrit = 0.895 / (M0.5 – 0.01 + 0.85M–0.5) 
= 0.895/(430.5 – 0.01 + 0.85·43-0.5) 
= 0.134 

 
Since D < Dcrit, the fragility function passes the goodness of fit test.  
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Table 4-1. Example 1 slab-column connection damage data; r = peak transient, % 
Specimen r Specimen r Specimen r 

3 0.43 21 0.31 69 0.50 
4 0.30 22 0.40 71 0.19 
5 0.28 23 0.36 72 0.19 
6 0.65 24 0.28 73 0.28 
7 0.22 25 0.20 74 0.28 
8 0.32 26 0.50 75 0.40 
9 0.43 27 0.25 76 0.74 

10 0.42 28 0.50 77 0.54 
11 0.28 59 0.64 78 0.43 
12 0.35 60 0.54 79 0.71 
16 0.31 61 0.40 80 0.43 
17 0.31 62 0.80 81 0.50 
18 0.28 66 0.50 82 0.70 
19 0.22 67 0.50  
20 0.22 68 0.50  

(Specimens without PTD data are omitted) 
 

Table 4-2. Example 1 calculation of fragility function parameters 
i ri ln(ri) ln(ri/xm)2 i ri ln(ri) ln(ri/xm)2 
1 0.19 -1.66 0.481 23 0.40 -0.92 0.003 
2 0.19 -1.66 0.481 24 0.42 -0.87 0.010 
3 0.20 -1.61 0.412 25 0.43 -0.84 0.015 
4 0.22 -1.51 0.299 26 0.43 -0.84 0.015 
5 0.22 -1.51 0.299 27 0.43 -0.84 0.015 
6 0.22 -1.51 0.299 28 0.43 -0.84 0.015 
7 0.25 -1.39 0.175 29 0.50 -0.69 0.075 
8 0.28 -1.27 0.093 30 0.50 -0.69 0.075 
9 0.28 -1.27 0.093 31 0.50 -0.69 0.075 

10 0.28 -1.27 0.093 32 0.50 -0.69 0.075 
11 0.28 -1.27 0.093 33 0.50 -0.69 0.075 
12 0.28 -1.27 0.093 34 0.50 -0.69 0.075 
13 0.28 -1.27 0.093 35 0.50 -0.69 0.075 
14 0.30 -1.20 0.056 36 0.54 -0.62 0.123 
15 0.31 -1.17 0.041 37 0.54 -0.62 0.123 
16 0.31 -1.17 0.041 38 0.64 -0.45 0.272 
17 0.31 -1.17 0.041 39 0.65 -0.43 0.288 
18 0.32 -1.14 0.030 40 0.70 -0.36 0.373 
19 0.35 -1.05 0.007 41 0.71 -0.34 0.391 
20 0.36 -1.02 0.003 42 0.74 -0.30 0.444 
21 0.40 -0.92 0.003 43 0.80 -0.22 0.554 
22 0.40 -0.92 0.003 Σ = -41.60 6.399 
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Table 4-3. Example 1 Lilliefors goodness-of-fit test 
i ri S Fdm(ri) |F-S|  i ri S Fdm(ri) |F-S|  
 0.19 0.000 0.038 0.038  23 0.4 0.535 0.552 0.017 

2 0.19 0.047 0.038 0.009  0.42 0.535 0.601 0.066 
 0.2 0.047 0.050 0.004  24 0.42 0.558 0.601 0.043 

3 0.2 0.070 0.050 0.020  0.43 0.558 0.624 0.066 
 0.22 0.070 0.081 0.011  28 0.43 0.651 0.624 0.027 

6 0.22 0.140 0.081 0.059  0.5 0.651 0.759 0.108 
 0.25 0.140 0.142 0.002  35 0.5 0.814 0.759 0.055 

7 0.25 0.163 0.142 0.021  0.54 0.814 0.816 0.002 
 0.28 0.163 0.217 0.054  37 0.54 0.860 0.816 0.045 

13 0.28 0.302 0.217 0.085  0.64 0.860 0.909 0.049 
 0.3 0.302 0.272 0.030  38 0.64 0.884 0.909 0.025 

14 0.3 0.326 0.272 0.053  0.65 0.884 0.915 0.032 
 0.31 0.326 0.301 0.025  39 0.65 0.907 0.915 0.008 

17 0.31 0.395 0.301 0.094  0.7 0.907 0.941 0.034 
 0.32 0.395 0.330 0.066  40 0.7 0.930 0.941 0.011 

18 0.32 0.419 0.330 0.089  0.71 0.930 0.945 0.015 
 0.35 0.419 0.416 0.002  41 0.71 0.953 0.945 0.008 

19 0.35 0.442 0.416 0.025  0.74 0.953 0.956 0.003 
 0.36 0.442 0.445 0.003  42 0.74 0.977 0.956 0.021 

20 0.36 0.465 0.445 0.020  0.8 0.977 0.972 0.005 
 0.4 0.465 0.552 0.087  43 0.8 1.000 0.972 0.028 
         Max = 0.11 
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Figure 4-1. Example 1 fragility function with data and sample cumulative distribution function 
 
Example 2. Method B. Consider the (imaginary) damage statistics shown in Figure 4-2. The figure 
depicts performance of motor control centers (MCCs) observed after various earthquakes in 45 facilities. 
Each box represents one specimen. Crosshatched boxes represent MCCs that experienced noticeable 
earthquake effect such as shifting but that remained operable. Black boxes represent those that were found 
to be inoperable following the earthquake. Each stack of boxes represents one facility. Calculate the 
fragility function using PGA as the EDP, binning between halfway points between PGA values shown in 
the figure.  
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Figure 4-2. Example 2 damage data 

 
Solution. The number of bins, N, and the lower EDP bounds aj, are dictated by the available data: N = 5 
bins with lower bounds of 0.15g, 0.25g, etc. The values of Mj and mj are found by counting all boxes and 
black boxes, respectively, in Figure 4-2, in each bin, and are shown in Table 4-4. The value of M is found 
by summing: M = ΣMj = 260. Values xj and yj are calculated as xj = ln( jr ), and yj = Φ-1((mj+1)/(Mj+1)). 
Average values are calculated as shown: x = –0.99, y = –1.05, according to Equation 18. For each bin, 
the values of jx x−  and jy y− are calculated as shown.   
 

Table 4-4. Example 2 solution data 
j aj (g) jr (g) Mj mj xj yj jx x− jy y− ( )2

jx x−  ( )( )j jx x y y− −

1 0.15 0.2 52 0 -1.61 -2.08 -0.623 -1.031 0.388 0.642
2 0.25 0.3 48 4 -1.20 -1.27 -0.217 -0.223 0.047 0.049
3 0.35 0.4 84 8 -0.92 -1.25 0.070 -0.202 0.005 -0.014
4 0.45 0.5 35 15 -0.69 -0.14 0.294 0.907 0.086 0.266
5 0.55 0.6 41 12 -0.51 -0.50 0.476 0.549 0.226 0.261

Σ =    260  -4.93 -5.23 0.753 1.204
Average =      -0.99 -1.05  

 
Then, β and xm are calculated as shown in Equation 17:  
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The results can be checked by plotting y versus x and fitting a line, as shown Figure 4-3: β is the inverse 
of the slope of the trendline, 1/1.60 = 0.62, and xm is the value of r at which the line has a y-value of 0, 
i.e., xm = exp(–0.53/1.60) = 0.72.  
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Figure 4-3. Checking Example 2 results 
 
Example 3. Alternative Method B. Fit a lognormal cumulative distribution function to on the data from 
Example 2 using the alternative method presented in C2.2.  
 
Solution. Here, 
 

M = number of specimens observed 
= 260 

i = index of specimens, i ∈ {1, 2, … M} 
 ri = PGA to which specimen i was subjected, shown in Figure 4-2, ri ∈ {0.2g, 0.3g,… 0.6g} 
 fi = failure indicator for specimen i, shown in Figure 4-2 

= 1 if specimen i failed (not operable) 
= 0 otherwise 

 Φ   = standard normal (Gaussian) cumulative distribution function  
 
Per Equation 31, the objective is to find xm and β to minimize the average squared error ε such that: 
 

( )
2

1

ln1

0
0

M
i m

i
i

m

r x
f

M

x

ε
β

β

=

⎛ ⎞⎛ ⎞
= − Φ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
>
>

∑
 

 
For example, specimen 101 failed by the time it had experienced r = 0.30g. Denoting by εi the 
contribution to the error term ε from specimen i,  
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Summing the εi for i = 1, 2, … 260, finding xm and β that minimize ε, and omitting the data for brevity, it 
is found that  
 

xm = 0.74g 
β = 0.59 

 
These values compare well with Example 3, which produced xm = 0.72 and β = 0.62.  
 
Example 4. Second Alternative Method B. Consider the following data on hydraulic elevator failures in 
the Loma Prieta and Northridge Earthquakes. Using PGA as the EDP and taking each facility as a 
separate bin, create a fragility function for hydraulic elevators using the second alternative method 
provided in Section C2.2.  
 
Table 4-5. Summary of hydraulic elevator failure data 

Location 
PGA
(g) 

No.  
exposed

No. 
damaged Earthquake 

Stanford University 0.26 77 4 Loma Prieta 
Valley Presbyterian  0.38 4 2 Northridge 
St Johns Hospital Main Wing  0.50 1 1 Northridge 
St Johns Hospital South Wing 0.50 1 0 Northridge 
St Johns Hospital Mental Health Center 0.50 2 2 Northridge 
Cedars Sinai Becker 0.26 1 0 Northridge 
Cedars Sinai Cancer 0.26 2 0 Northridge 
Northridge Medical Center  0.45 2 1 Northridge 
USC Medical Center  0.25 1 0 Northridge 
Total  91 10  

 
Solution. Here, each location is treated as a bin; xj = PGA at location j, Mj = number of elevators at 
location j, mj = number of damaged elevators at location j, yj = mj/Mj, εj

2 is calculated as  
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j     Location xj (g) Mj mj Mj/M yj Φ ε2
j 

1. Stanford University 0.26 77 4 0.85 0.05 0.06 9.46E-06 
2. Valley Presbyterian 0.38 4 2 0.04 0.50 0.40 4.71E-04 
3. St Johns Hospital Main Wing 0.50 1 1 0.01 1.00 0.76 6.41E-04 
4. St Johns Hospital South Wing 0.50 1 0 0.01 0.00 0.76 6.32E-03 
5. St Johns Hospital Mental Health Center 0.50 2 2 0.02 1.00 0.76 1.28E-03 
6. Cedars Sinai Becker 0.26 1 0 0.01 0.00 0.06 3.36E-05 
7. Cedars Sinai Cancer 0.26 2 0 0.02 0.00 0.06 6.72E-05 
8. Northridge Medical Center 0.45 2 1 0.02 0.50 0.63 3.70E-04 
9. USC Medical Center 0.25 1 0 0.01 0.00 0.04 1.89E-05 
 M = 91    Total 9.22E-03 

 
The values of xm and βr that minimize ε2 are xm = 0.41g and βr = 0.28. It can be assumed that not all 
specimens were in the same configuration, had the same installation conditions, or experienced the same 
loading history, so βu  = 0 and  
 

xm = 0.41g 
β = 0.28 

 
Example 5. Method C. Ref [20] performed full-scale shake-table tests on ceiling systems with a variety of 
lateral restraint systems. Ten tests simulated conditions with a perimeter wall that provided a boundary, 
and with the ceiling attached to the perimeter. Peak ceiling acceleration (PCA) and peak diaphragm 
acceleration (PDA) from 9 of these tests are recorded in Table 4-6. Calculate the fragility function in 
terms of (a) PDA, and (b) PCA. 
 

Table 4-6. Example 5 ceiling test data 
ID Test, run PDA (g) PCA (g) Failure 
5 7-2 0.39 1.17 FALSE 
7 6-1 0.48 1.82 FALSE 
8 4-1 0.49 0.82 FALSE 

10 5-1 0.51 1.08 FALSE 
11 7-3 0.52 1.48 FALSE 
12 6-3 0.69 1.81 FALSE 
13 7-4 0.76 1.70 INCIPIENT 
14 5-5 0.79 2.56 FALSE 
16 6-4 1.03 2.43 INCIPIENT 

 
Solution. (a) Here, ri = PDA for specimen i, rmax = 1.03g, rd = 0.76g, 0.7rmax = 0.72g, ra = min(0.76g, 
0.72g) = 0.72g, MA = 1, MB = 0, and MC = 2. By Equation 19,  
 

S = (0.5MC + 0.1MB)/(MA + MB + MC) 
= (0.5·2 + 0.1·0)/(1 + 0 + 2) 
= 0.33 

 
Since MB + MC > 0, rm = 0.5·(rmax + ra) = 0.88g. From Table 2-1, S > 0.3, so Fdm(rm) = 0.4. From Equation 
20, β = 0.4 and xm = 1.11rm = 0.97g peak diaphragm acceleration. 
 
(b) Here, ri = peak ceiling acceleration for specimen i, rmax = 2.56g, rd = 1.70g, 0.7rmax = 1.79g, ra = 
min(1.70g, 1.79g) = 1.70g, MA = 3, MB = 0, and MC = 2. By Equation 19,  
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S = (0.5MC + 0.1MB)/(MA + MB + MC) 

= (0.5·2 + 0.1·0)/(3 + 0 + 2) 
= 0.2 

 
From Table 2-1, 0.15 < S ≤ 0.3, so Fdm(rm) = 0.2. Since MB + MC > 0, rm = 0.5·(rmax + ra) = 2.13g. From 
Equation 20, β = 0.4 and xm = 1.40·rm = 3.0g peak ceiling acceleration. 
 
Example 6. Method D. Overturning of tall slender objects such as bookcases can disrupt normal building 
operations and in some cases endanger life safety. Ref [21] proposes that if the coefficient of static 
friction between the floor and an object (of width B and height H), is in excess of B/H, then in earthquake 
shaking, rocking will occur (as opposed to sliding), and the object can overturn when the floor 
acceleration and velocity exceed certain threshold values: 
 

a0 = B/H (units of gravity) 
v0 = 10B/H0.5 (units of cm and sec) 

 
Create two fragility function for bookcases with B = 12 in, H = 72 in, for a building with T = 0.3 sec. The 
first fragility function, for damage state dm = 1, is for withdrawal of the screw from the wall. The nominal 
withdrawal capacity of the screw in tension is 80 lb. Also calculate the fragility function for dm = 2, 
overturning of the bookcase. What if the building has T = 1.0 sec? Assume the 50-lb bookcase is loaded 
with 200lb of books, that the coefficient of static friction between books and bookcase is 0.5, and that the 
bookcase is secured to gypsum wallboard partition by a fabric strap at the top secured to the wall by a no-
8 self-drilling screw fixed into the 25-ga. metal stud behind through 5/8-in wallboard. What is the fragility 
function for dm = 1 if the screw misses the stud (withdrawal capacity 15 lb)? 
 
Solution. First consider dm = 1. The reactive mass is 150lb acting at a height of 36 in, opposed by a screw 
with pullout capacity of 80 lb acting at a height of 72 in. Pullout occurs when  
 

150 36 80 72
1.1

a lbm in lbf in
a g

⋅ ⋅ > ⋅
>

 

 
Then by Equation 21, 
 

xm = 0.92·1.1g = 1.0g peak diaphragm acceleration 
β = 0.4 

 
If the screw misses the stud, pullout occurs when a > 15·72/(150·36), or 0.2g, and  

 
xm = 0.92·0.2g = 0.18g peak diaphragm acceleration 
β = 0.4 

 
Next consider overturning of the unanchored bookcase (dm =2; the bookcase must have passed through 
dm = 1 already). Here, B/H = 0.167. For common interfaces between a bookcase and a floor finish (e.g., 
steel or wood or carpet), μ >> 0.167, so it can be assumed that bookcases will rock rather than slide. 
Assuming sinusoidal excitation of amplitude a at angular frequency ω, overturning occurs when 
 

( ) ( )0 0sin cosa t a and a t vω ω ω> >  
 
Making units explicit and expressing v0 in terms of a0,  
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overturning occurs when  
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So for a building with T = 0.3 sec, overturning of the unanchored bookcase occurs when PDA ≥ 0.65g. 
For the case where the screw is anchored in the stud, dm = 2 will be exceeded when dm = 1 is exceeded, 
and thus for dm = 2, 
 

xm = 1.0g 
β = 0.4 

 
For T = 0.3 sec and the screw misses the stud, the overturning capacity governs dm = 2, and  
 

xm = 0.92·0.65g = 0.60g 
β = 0.4 

 
For the building with 1-sec period, overturning of the unanchored bookcase occurs when PDA ≥ 0.31g. If 
the screw is anchored in the stud, overturning will occur only after screw pullout, and again for dm = 2, 
 

xm = 1.0g 
β = 0.4 

 
For the case of T = 1.0 sec and the screw misses the stud, the overturning capacity governs dm = 2, and  
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xm = 0.92·0.31g = 0.29g 
β = 0.4 

 
Example 7. Method E. Stone cladding on the exterior of office buildings is potentially subject to falling 
in earthquakes. Consider 2-ft x 2-ft x 1-3/16-in granite veneer adhered to a concrete masonry unit 
substrate with thin-bed mortar (liquid latex mixed with Portland cement, 100% coverage). Create a 
fragility function for the probability that any given panel would fall from the building, as a function of the 
peak transient drift ratio of the story on which the panel is applied.  
 
Solution. Figure 2-1 was used to solicit judgment from three engineers on the fragility of the component, 
using the following definitions. 
 
Component name:  Granite cladding 1  
Component definition: 2-ft x 2-ft x 1-3/16-in granite veneer adhered to CMU substrate with thin-bed 

mortar (liquid latex mixed with Portland cement, 100% coverage.)   
Damage state name:  Falling  
Damage state definition:  Any given cladding panel becomes delaminated from CMU substrate and falls  
Relevant EDP: PTD  
Definition of EDP:  Peak transient drift ratio of story and column line on which panel is adhered  
 
Responses are shown in columns 2, 3, and 4 of the following: 
 

(1) 
Response i 

(2) Expertise 
wi 

(3) Median
 xmi 

(4) Lower 
bound xli 

(5) 
wi

1.5 
(6) 

wi
1.5·xmi 

(7) 
wi

1.5·xli 
1 2 0.003 0.0015 2.83 0.0085 0.0042 
2 1 0.005 0.001 1.00 0.0050 0.0010 
3 2 0.010 0.005 2.83 0.0283 0.0141 
   ∑ = 6.66 0.0418 0.0194 

 
By Equations 23, 24, and 25, 
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Example 8. Method U. Consider Example 4, Method C. One additional test is reported in Ref [20]: a 
ceiling collapse in a test of a ceiling with perimeter attachment, where the collapse occurred at or below 
PDA = 1.99g. Update the fragility function from Example 4a.  
 
Solution. From Example 5a, 
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xm =  1.14 
β = 0.40 

 
The new data point is: 
 

i ri fi 
1 1.99 1 

 
From Equation 30,  
 

 j 
 1 2 3 4 5

xmj 1.14 0.70 1.86 1.14 1.14
βj  0.40 0.40 0.40 0.26 0.54
wj 0.333 0.167 0.167 0.167 0.167

 
For example,  
 

xm2 = 1.14exp(–1.22·0.40) = 0.70 
β4 = 0.64·0.40 = 0.26 

 
From Equation 29,  
 

L(i,j) j 
i 1 2 3 4 5
1 0.92 1.00 0.57 0.99 0.85

 
For example,  
 

L(1,1) = Φ(ln(1.99/1.14)/0.4) = 0.92 
 
Calculating the terms needed for Equation 28, and noting that since M = 1, ΠiL(i,j) = L(1,j) 
 

 j 
 1 2 3 4 5

wjΠiL(i,j) 0.31 0.17 0.09 0.16 0.14
 
For example,  
 

w1L(1,1) = 0.333·0.92 = 0.31 
 
Evaluating the denominator for Equation 28, 
 

Σjwj ΠiL(i,j) = 0.87 
 
Evaluating Equation 28 for each j yields the new weights w′j and the terms needed for Equation 27: 
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 j 
 1 2 3 4 5

W'j 0.35 0.19 0.11 0.19 0.16
w'jln(xmj) 0.05 -0.07 0.07 0.02 0.02

w'jβj 0.14 0.08 0.04 0.05 0.09
 
For example, w'1 = 0.31/0.87 = 0.35; w'1ln(xm1) = 0.35ln(1.14) = 0.05; and w'1β1 = 0.35·0.40 = 0.14. 
Summing the second row, 
 

Σjw'jln(xmj) =  0.09 
 
Finally, evaluating Equation 27 yields the updated parameters of the fragility function:  
 

x′m = 1.10 
β' = 0.40 

 
 
SECTION 4 COMMENTARY  
 
In Example 1, note well that the sample CDF is stepped, with a zero slope between different levels of 
EDP. The value of D is therefore not necessarily the maximum vertical distance between the smooth 
fragility function and a data point, but may be larger.  
 
Examples 2 and 3 employ Ref [22] for data on Mi and ri, and for the depiction of specimen damage. 
However, the damage data, mi, are simulated. 
 
In Example 4, failure data come from [23] and [24]. Failure is defined as experiencing any of the 
following: damage to controls, the elevator entrance, the car door, car guide shoes, cab stabilizers, cab 
interior, equipment anchorage, hydraulic cylinder or piping, or snagged ropes and traveling cables. 
Facilities were geolocated using [25]. PGA estimates are interpolated from the two nearest strong-motion 
instruments, using [26] and [27].  
 
In Example 5, Ref [20] reported that splay-wire bracing and compression struts appear never to be 
activated.  Only perimeter capture and attachment (where present) appear to be relevant to ceiling failure.   
 
In Example 6, the withdrawal capacity of screws from metal stud is taken from [28], and assumes a factor 
of safety of 1.33. In the example, anchorage failure is treated as a distinct damage state, as anchorage 
failure involves economic cost (repair of the partition), is not necessarily synonymous with overturning, 
and overturning has different consequences (threatening life safety).  
 
In Example 8, the updated parameters of the fragility function change little because there is little 
information in the failure of a specimen failed subjected to 1.75xm. Had the specimen not failed at that 
level of excitation, the parameters would have changed more: they would have been x′m = 1.5g and β = 
0.43. 
 
 
 



 – 37 – July 31, 2006 

 

5  OTHER ISSUES 

This section addresses issues not dealt with earlier, particularly the correlation of damage between 
different components in a building.  
 
5.1 CORRELATION OF DAMAGE 

It may be that capacity of a particular component type varies between construction contractors, between 
crews working for that contractor, and perhaps days of the week for a given crew. However, until test or 
other empirical data are produced to create and defend a model of damage correlation as a function of 
these or other parameters, it will be assumed here that damage between different components is 
independent, conditioned on EDP.  
 
Rationale. In dealing with nuclear power plant risk studies, the authors of [29] argue that nonzero 
correlation between damage to different components may exist, even conditioned on EDP. They 
recommend assuming perfect correlation if the components are of the same type (here, the same 
taxonomic group), same manufacturer (here, same construction contractor), and located at the same level 
and with the same orientation (here, the same EDP). Zero correlation should be assumed if none of these 
conditions exist. If some but not all conditions exist, they recommend using either perfect correlation or 
zero correlation, whichever is more conservative. However, in the present application, conservatism is not 
an objective. Furthermore, data for the fragility functions used here are often developed from specimens 
constructed by a single crew of a single construction contractor in a laboratory and subjected to the same 
excitation (same EDP), which would argue for perfect correlation. Under perfect damage correlation, β = 
0, yet these tests they tend to yield 0.2 ≤ β ≤ 0.6. Finally, the present application of PBEE aims at 
simplicity. In summary, it is recommended that correlation be ignored because of (1) no desire for 
conservative loss estimate, (2) test data that suggest substantially less than perfect correlation, and (3) 
preference for simplicity.  
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